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Abstract

This paper deals with the use of causality to help filling
the null space of linear operators characterizing prac-
tical seismic problems as compensation of source and
receiver ghosts and absorption. A mathematical ap-
proach to the problem is presented followed by some
synthetic examples that makes it clear the limitations
of this approach and points to new strategies to deal
with the inherent uncertainties on the process model
parameters.

Introduction

Waveform inversion (WI) is a process to estimate subsur-
face wave propagation velocity models by iteratively refin-
ing a given initial velocity model. At each iteration an up-
date direction is computed from the gradient of the mis-
fit function bewteen field and synthetic data. For pseudo-
acoustic anisotropic models, computing the gradient of ob-
jective function requires at least three wavefield reconstruc-
tions (forward problem), which is computationally demand-
ing in 3D applications.

We present a way for computing the gradient for WI of
pseudo-acoustic models using the strategy presented by
Alkhalifah, 2013. In this strategy an effective isotropic
acoustic medium is used to propagate wavefields with the
same traveltime of wavefields propagated in the associ-
ated anisotropic medium. The parameters of the isotropic
effective medium are derived from the parameters of the
anisotropic medium through the solution of the anisotropic
eikonal equation. This technique can reduce the cost of
anisotropic WI at least four times when compared to ef-
ficient methods to solve the pseudo-acoustic anisotropic
wave-equation, as the one presented by Fowler, Du &
Fletcher (2010).

Theory

The works of da Silva & Sava(2009) introduced the con-
cept of kinematically equivalent isotropic media in the con-
text of migration of common-offset data. The solution to the
isotropic eikonal equation in the equivalent medium repro-
duces the isochrons of the migration impulse response for
finite offset data. Alkhalifah et al., 2013, showed that this
concept can be extended to anisotropic models and pre-
sented its application to RTM in TTI models, demonstrating
that it is possible to build an effective isotropic model in

which the wavefronts present the same traveltimes of the
wavefield in the original anisotropic model. This construc-
tion is valid for anisotropic media with all kinds symmetry.

If a TTI medium is considered, this concept can be mathe-
matically expressed as follows. Let the anisotropic param-
eters of the original model be:

mani = { v0(~x), ε(~x), δ (~x), θ(~x), φ(~x) } (1)

The effective isotropic model is parameterized by:

miso = { ve f f (~x) } (2)

The condition to build the effective model is that the travel-
time of first arrivals are equal in both models:

τiso(~x ; ve f f ) = τani(~x ; v0 , ε , δ , θ , φ) = τ(~x) (3)

Hence, there is a functional relation between the parame-
ters of mani and miso:

ve f f (~x) = ζ (v0(~x), ε(~x), δ (~x), θ(~x), φ(~x)) (4)

The relation of equation 4 can be established in the follow-
ing way. First we compute the traveltimes τ(~x) by solving
the anisotropic eikonal equation for a point source in the
original medium:

Hani(~p ; v0 , ε , δ , θ , φ) = 0, (5)

where

Hani ≡ cε [~p·~p−(~p· n̂)2]+c0(~p· n̂)2−c0(cε −cδ )[~p·~p−(~p· n̂)2](~p· n̂)2−1
(6)

c0 = v2
0cε = v2

0 (1+2ε)cδ = v2
0 (1+2δ )~p(~x) = ∇τ(~x) (7)

In the equations above, ~p(~x) is the slowness at the point
~x. Then, we use the computed traveltime/slowness to solve
the isotropic eikonal for the effective parameter ce f f :

Hiso(~p ; ce f f ) = 0, (8)

where
Hiso ≡

1
2

[ce f f (~p ·~p)−1] (9)

ce f f = v2
e f f (10)

Finally, the parameter ce f f (~x) defines the effective isotropic
model and can be used to compute a wavefield with the
acoustic wave-equation:

∇
2
ψ(t,~x)− 1

ce f f

∂ 2ψ(t,~x)
∂ t2 = s(t)δ (~x−~x0), (11)
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where s(t) is the point source time function.

The effective model is built in a way that traveltimes are cor-
rect, but the same is not guaranteed for the amplitudes of
the wavefield. For this reason, the functional we choose for
the local optimization process should preferrably be more
sensitive to traveltimes. One functional that satisfies this
requirement is that proposed by Luo and Schuster, 1991. It
is defined in the following way:

Φ = ∑
s,r

∆τ
2
s,r, (12)

where the indexes s and r designate a source and a re-
ceiver station, respectively. The quantity ∆τs,r is defined by
means of the connective function fs,r(τ), which is the nor-
malized cross-correlation between synthetic and observed
data:

fs,r(τ) =
∫

dt
dobs

s,r (t + τ) dsyn
s,r (t)

Aobs
s,r

, (13)

where Aobs
s,r is the absolute value of the maximum amplitude

of dobs
s,r . We define ∆τs,r as the lag for which fs,r reaches its

maximum value:

fs,r(∆τs,r) = max{ fs,r(τ)} (14)

As ∆τs,r depends on the model parameters, Φ does too.
Moreover, the dependence on the anisotropic parameters
is given indirectly through the effective parameter ce f f :

Φ = J(ce f f (c0, cε , cδ )) (15)

In equation 15, the dependence of the objective function
J on the angular anisotropic parameters θ and φ can be
ignored if we assume that these parameters are given a
priori. As a matter of fact, even though we are writing equa-
tions 1 through 15 for a TTI model, it is straightforward to
write them for any kind of anisotropic model.

As a consequence of the indirect dependence expressed in
equation 15, the gradient of J with respect to the anisotropic
parameter ci is given by the following chain rule for deriva-
tives:

∇ci J = (∇ce f f J) ·
∂ce f f

∂ci
(16)

As shown by Luo & Schuster (1999), Pratt, Shin & Hicks
(1998), and Tarantola (1984), the gradient ∇ce f f J is the
the zero-lag of the time correlation between the back-
propagated residuals and the second time-derivative of the
source wavefield.

The partial derivatives ∂ce f f /∂ci can be computed by
means of the isotropic and anisotropic eikonals as follows.
Considering the stationarity of the Hamiltonians Hiso and
Hani (equations 6 and 9), we may write:

dHani

dci
= ∇~pHani ·

∂~p
∂ci

+
∂Hani

∂ci
= 0 (17)

As ~p = pn̂, where n̂ is the ray direction, we have:

dHani

dci
= ∇~pHani ·

(
∂ p
∂ci

n̂+ p
∂ n̂
∂ci

)
+

∂Hani

∂ci
= 0 (18)

Variations in ci should have a significant impact on the di-
rection of the ray only in the second order. In this case, we

may neglect ∂ n̂/∂ci. Equivalently for the isotropic Hamilto-
nian:

dHiso

dci
= ∇~pHiso ·

∂~p
∂ci

+
∂Hiso

∂ce f f
·

∂ce f f

∂ci
= 0 (19)

Neglecting ∂ n̂/∂ci and considering that p = 1/ve f f :

dHiso

dci
= ve f f

∂ p
∂ci

+
∂Hiso

∂ce f f
·

∂ce f f

∂ci
= 0 (20)

Replacing ∂ p/∂ci in equation 18 from equation 20 and ob-
serving that ~p ·∇~pHani = 1, we end up with:

∂ce f f

∂ci
≈ ce f f

∂Hani

∂ci
(21)

Substituting equation 21 in equation 16:

∇ci J ≈ (∇ce f f J) · ce f f
∂Hani

∂ci
(22)

Synthetic Experiment

As a proof of concept, we designed a computational ex-
periment in which we apply the method described above.
In this experiment we generate synthetic data from a
VTI model with homogeneous background and two gaus-
sian anomalies (figure ). The background values of the
anisotropic parameters are: v0 = 1500.0m/s, ε = 0.0, δ =
0.0. In this experiment shot points are placed on the surface
(above) and receivers are placed underneath the anoma-
lies. This configuration of shot and receiver points provides
illumination of the anomalies with a wide and relatively ho-
mogeneous range of angles, which favours analisys of the
gradient built with the method presented above.

Figure 2 shows the partial derivatives ∂ce f f /∂ci for a shot
point at the middle of the model’s upper boundary. Red-
coloured regions possess high values of derivatives and
correspond to locations where the effective parameter ce f f
is more sensitive to that specific anisotropic parameter.
The patterns we see are consistent with what is expected
for each anisotropic parameter. In other words, ce f f is
more sensitive to the squared vertical velocity c0 along
wavepaths close to the vertical direction; ce f f is more sen-
sitive to the squared horizontal velocity cε along wavepaths
close to the horizontal direction; ce f f is more sensitive to
the squared moveout velocity cδ along wavepaths close to
intermediate directions (45 degrees).

Finally, figure 3 shows the isotropic gradient above the
anisotropic gradients for c0 and cε . Displayed on top is
the representation of the model with the gaussian anoma-
lies. From the figure one can realize that the isotropic gra-
dient recovers in ce f f both anomalies. The anisotropic gra-
dient for cε presents strong cross-talk and contains high
amplitudes in the location of the c0 anomaly. On the other
hand, the gradient for c0 is less sensitive to cross-talk and
presents high amplitudes only in the location of the c0
anomaly. This is in accordance with the ideas discussed
by Operto et al (2013) about multiparameter FWI. The re-
comendations given by them in the paper should be fol-
lowed here: inversion for c0 must be performed first, after
which the inversion can be done for the anisotropic param-
eter cε . Another way of reducing cross-talk between pa-
rameters is by applying the inverse of the hessian operator.
Further work will demonstrate how to perform the compu-
tation of the Hessian and how to apply its inverse.

Fourteenth International Congress of The Brazilian Geophysical Society
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Conclusion

We presented a new method for computing the gradient for
anisotropic waveform inversion using the concept of kine-
matically equivalent isotropic medium. Since this method
requires only the solution of the acoustic wave-equation,
it is at least four times more efficient than methods using
pseudo-acoustic wave-equations, and at least one order
of magnitude more efficient than methods based on the
solution of anisotropic elastic wave-equation. The restric-
tion here is that only first arrivals are used in the inversion.
Hence, it is more suitable for shallow zones or regions with
a depth increasing velocity gradient.
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Figure 1: Synthetic experiment with homogeneous background and gaussian anomalies in vertical velocity v0 (left anomaly) and in ε (right
anomaly). Shot points are located on the surface and receivers are placed underneath the anomalies.

Figure 2: From top to bottom partial derivatives for: c0, cε and cδ .

Figure 3: From top to bottom: Representation of the model and the gaussin anomalies in c0 and in cε ; isotropic gradient; gradient for parameter
c0; gradient for parameter cε .
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